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The problem of internal shock waves (IS) and the reasons for their 
appearance in inviscid and non-heat-conducting gas flows past wedge-plate 
(WP) and cone-cylinder (Cc) configurations without an angle of attack are 
studied.for the case of an attached bow shock wave and a supersonic flow 
behind it. For the CC case the axis of the cylinder coincides with the 
direction of incoming flow. It'is shown that, within the limits of 
validity of the isentropic approximation used in describing flows with 
weak shocks, the WP is streamlined without fS forming. On the other hand, 
the sufficient condition for the appearance of IS in the flow modes under 
discussion is that the flow overexpands directly past the corner 
representing the point where the generatrices of the wedge (cone) and 
plate(cylinder) meet. The appearance or non-appearance of such an over- 
expansion can be established for any intensity of the attached shock wave 
(AS) in a supersonic flow behind it, without any additional simplifications 
whatsoever. Computations carried out have shown that the flow past CC 
contains an IS over the whole ranqe of Mach numbers M-of the incoming 
flow under investigation. In contrast to this, in the case of WP, flows 
are possible with overexpansion (the pressure behind the corner is less 
than the pressure in the incoming flow), as well as with underexpansion, 
and both situations can be observed, in particular, in the case of a weak 
AS and low supersonic velocities of the incoming flow, while in the case 
of the so-called transonic approximation (TA) overexpansion always 
occurs behind the corner (see /l/j). The lack of overexpansion behind 
the corner by no means implies that there is no IS for the WP. The fact 
is that in such cases the change in pressure along the plate can also 
be non-monotonic. This may happen e.g. if the rarefaction waves emerging 
from the corner are reflected from the WP, or from its segment, like the 
compression waves. Recognition of the latter circumstance leads to 
additional narrowing of the region in which fully supersonic flows past 
the WP can be realized without IS. 

The cases of completelysupersonic flows past the WP and CC studied below differ essentially 
from the cases of mixed flows past the same configurations, when the flow impinging on a wedge 
or a cone M<i becomes sonic immediately in front of the corner and then dispersesina bundle 
or rarefaction waves. The latter closes to the right of the ISoriginating immediately behind 
the corner, with zero intensity at the corner and tangent to the closing characteristic of the 
bundle /2-S/. Here the appearance of the IS depends on the structure of the flow near the 
corner where the Vaglio-Laurin solution holds /6-E/. The necessity for the appearance of IS 
in the case of WP in the isentropic approximation follows, according to /l/, from a qualitative 
analysis in the hodograph plane using the Nikolskii-Taganov theoremi/9, lO/ on the monotonic 
nature of the variation in the angle of inclination of the velocity vector v.during the motion 
along the sonic line. 

Thus a flow past a CC always contains an IS. In the case of a HP a fully supersonic flow 
past it without an IS is possible, although in mixed cases which, basically, occur with a 
detached bow shock, an IS is obligatory. A similar situation occurs when the plate (cylinder) 
is replaced by a wedge (cone) with anangleofinclinationofthe generatrix less then the 
semivertex angle t+, of the bow wedge/cone). Incidentally, the blunt plate and cylinder can 
be regarded as a WF' or CC with 8k=n/2. It should be stressed that IS were first detected 
experimentally /ll/ and computationally /12, 13/ in precisely these cases. Nevertheless, 
although for the configurations in question under mixed flow modes the appearance of IS 
follows inevitably from /l-S/, the analysis of the fully supersonic flow of a slightly 
supersonic stream past a WP carried out within the framework of the TA is often regarded as 
proof of the necessity of the appearance of IS in all modes of flow with M,>i. 

Finally, it should be noted that the viscosity and thermal conductivity of the gas may 
bring substantial corrections into the solution of the problem of IS. Thus, even when there 
is no IS in an ideal gas, flow with turbulence in the boundary layer past the corner may IX 
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accompanied by the appearance of an "inverse pressure gradient" /14/ and the associated IS. 
On the other hand, flow past a fairly acute corner in the ideal approximation (e.g. when 
&=x/2) is connected with an appreciable overexpansion of the flow and subsequent sharp 
increase in the pressure along the plate (the corresponding derivative becomes infinite right 
behind the corner). In such situations the actual viscosity leads to the formation of a 
detached wave adjacent to the corner and to the downstream displacement of the IS /ll/. 

1. Th e pattern of fully supersonic flow past the WP and CC configurations is shown in 
Fig.1, where x and y are the axes of a Cartesian or cylindrical coordinate system. Apart 
from the contour AOB of the body, Fig.1 shows the As (double line), the c+-characteristics 

emerging from the corner, and the c--characteristics CB. 
Y We shall show that in the isentropic approximation, i.e. for 

AS of Jsufficiently low" intensity, in the plane. case, all 
c+-characteristics are segments of straight lines and the 
flow to the right of the closing c+-characteristic OE of the 
bundle COE is identical with the incoming flow. 

Before doing this we note, that if z~(p+-p-)/p_, where 
p is the pressure andtheminus(plus) index accompanies the 

L 
parameters in front of (behind) the shock, then, despite the 

A 
often-held opinion, the condition of sufficiently low intensity 
of the AS is not at all equivalent to the requirement that 
z-&i. Indeed, in the case of a real gas with gas constant R 

Fig.1 and adiabatic index x, we find that for I = 0.5; 1 and 2 the 
increment AIZE(S+- s_)/(xR) in specific entropy s for x= 1.4 

does not exceed O.OO5;0.025 and 0.094 respectively. The values of AS yield 0.0027;0,014 and 
0.057 in relative increments. AS E (8, - S-)/S_ of the entropy function ~=pp-~ (p is the density) 
and, when r=2 the component of the Mach number in the incoming flow M,,zm&_normal to the 
AS exceeds 1.6, i.e. the shock is not weak. The values of Ar and AS given above are computed 
from the exact relations on the shock. At the same time, the first term of the expansion of 
AS in powers of z 

As = (x + i) zs/(12x*) (1.1) 
increases A8 for the same z by factors of 1.9, 3 and 6.2 respectively. Therefore for (1.1) 
L= 0.5 is already too large. 

The following invariants are constant on the characteristics in a supersonic, plane 
parallel, isoenergetic and isentropic flow: 

zf=8*ul(p), a,(p)= 5 @y 4J (V=IVl) 
PI 

where 6 is the angle of inclination of V to the axis 5, P* is the critical pressure 
correspondinq to M = 1, and Z+(Z-) is preserved on the c*(c-) characteristics. We know that 
an invariant which is preserved in the subregions of the continuity of flow on the character- 
istics intersecting the shock, varies on weak shocks at the same rate as s. Thus in the case 
of Fig.1 with z<l we have on AS, just as in (1.1) Z+--Z_- = O(P). Because of this we find 
that 

Z-G 6 -G),(p) = z,- = -CD (pm) (1.2) 

within the framework of applicability of the isentropic approximation, and we have a simple 
wave-type flow with rectilinear c+-characteristics and uniform flow (identical to the in- 
coming flow) behind the closing characteristic of the bundle. Consequently, if the flow past 
wp has an As of low intensity, there is no IS inthe flow in the isentropic approximation 
irrespective ofthe.magnitude of M,. It is important to stress that the ranges of smallness 
of As with respect to z and of the validity of (1.2) are very close to each other. We also 
note that the arguments given here are widely used when snalysing steady and unsteady flows 
with weak shocks, and in particular, in deriving their laws of decay /15/. It is equally 
well-known that the equations of a shock polar and isentropic compression wave (1.2), or, in 
the case of a real gas, of the ellipsoid, 

tL+Z+1/= arctg 
x-i 

(V- 
- ctg a 
x+9 > 

-+const (1.3) 

where cc is the Mach angle (sina = l/M) are close to each other up to and including 0 V) 
for M+>1. 

Since the error of the isentropic approximation and the difference between the equations 
of the shock polar and (1.2) or (1.3) are of the same order, conclusions based on a comparison 
of these equations and concerning IS whose intensity outside the dependence on M, is found 
to be of the same order, i.e., O(aS), are invalid. The same result concerning the outside 
order of magnitude of the intensity of the IS follows naturally directly from the formulas Of 
TA. 
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Indeed, let n = (x -I- l)"* (V - i), where V relates to the critical velocity. Then denoting 
the parameters in AOC and DOB, by the indices "1" and "2" respectively, we find that 

al=(qm -t nl~'++ qr)/Vz. fh+ N*/3=%?3 (1.4) 

within the approximation used /l/. Here the first equation describes the shock wave in TA 
and the second one describes the bundle of rarefaction waves COE. 

Let us introduce the quantities e= (q.. - nJ/+.>O and 6 = (n.. -_#j= characterizing 
the intensity of AS and the difference in the parameters of the unperturbed flow and the flow 
in DOB. It can easily be shown that within the approximation used we have (pl -pJp.. = ke, 

and (P* - p,)/p, = kbwith k>O.The following relation holds for e< i and 16 I< 1 by virtue 
of (1.4): 

(1.5) 

whose last term characterizes the error of TA. 
On the one hand, (1.5) without O(b) shows, in accordance with /l/, that when the flow 

past the WP is fully supersonic when O<ql <q-, and e> 0, 8 is negative, i.e. p,<p- and 
overexpansion of the flow is observed behind the corner within the framework of approximation 
(1.4), leading to the appearance of IS. On the other hand, since by virtue of (1.5) p,-ppm = 
0 (8) = 0 (a”) where z = (pr - p,)lp,, and the entropy increment As in the shock to within 
which the first equation of (1.4) holds, is also of the order of O(9), it follows that the 
magnitude of the overexpansion in question is "of outside order" (it lies outside the limits 
of validity of the TA). This makes the arguments concerning the necessary appearance of IS 
to the right of OE, and following from (1.5), invalid. 

Fig.2 illustrates the nearness of the shock polar to the epicycloid describing the 
compression wave at moderate M-EM, and M+= M,>i. We see there, for four values of M,, 
the halves of the exact and "transonic" polar, the epicycloid (1.3) and its analogue from (1.4) 
where we must write &~@+,>,0 and '1~~11, in the second equation. The curve listed above are 
indicated by the numbers l,l’, 2 and 2'; the solid lines are the polars and the dashed lines are 
epicycloids ; Fig.Za-d correspond to M, = id; 1.3;1.5 and 1.6 and the angle 6~ft+ is given in 
degrees. The present and the following results refer to x= 1.4.b The passage from q* to pTt 

is made for tkansonic polars and epicycloids using the exact isentropic relations. For all 
four values of M, the differen& between the exact and transonic polars is greater than that 

between the transonic polars and epicycloids almost everywhere (with the exception, and then 
only for M,=i.i, of the neighbourhood of the apex of the epicycloid where M+=i). Further- 
more, the exact polars and epicycloids differ from each other less than the transonic ones 
and coincide for M, = 1.5 within the limits of accuracy of theirgraphic representation in 
Fig.2. Finally, for M-=1.6 the exact epicycloid is situated a priori outside the exact 
polar when the mutual position of their transonic analogues (epicycloid inside the polar) is 
independent of M_. In order to show this fundamental difference for M, = 1.5 and 1.6, Fig.2c 
and d show the curves 1’ and 2', although for such M, the TA is very coarse. At the same time, 
the same mutual disposition of the transonic and exact polars and epicycloids for M,, suffic- 
iently close to unity (Fig.Za and b) , shows that despite the fundamental correctness of the 
conclusions of TA concerning the IS for the case of a fully supersonic flow past a WP, the 
conclusions may be correct for such M,. The latter statement is confirmed by the exact results 
of the following section. 

Fig.2 

2. When the flow of a real gas past the configurationsunderdiscussion is fully super- 
sonic, pdp, is a function of M,, x and 6r. The dependence of p,/po. or G = (Pt - PceYP.. 
on the above parameters can be found exactly using the condition that I- is constant at the 
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corner point 0. If at is the Mach angle on the AO, then we can write this condition for the 
real gas, taking (1.3) into account, in the form 

f(m) = f (~4 + 6k, f (~4 = a + vs amtg ( 1/s ctga) (24 

All parameters SSpSCially ak and pk, are known ond0 from the solution of the problem of 
the flow past a wedge or a cone. Therefore, having found a, from (2.1), we can easily obtain 
p,Ipk in terms of ak and pk,and hence p,lp, = (pa/pk)(pk/pm) and zI. 

The results obtained in this manner for a WP'are shown in Fig.3a-c, where the angle 6k 
is given in degrees; the curves l,... correspond to different M,, every curve either continues 

outside the graph, or terminates with the angle 6k for which MI.= i, i.e. el,=ni2. The 
following correspondence exists between the numbersonthe curves and the Mach numbers M, (the 
brackets contain M,): 1 (id), 2 (1.2), 3 (1.25), 4 (1.26), 5 (1.27), 9 (i.3), 7 (1.4) 8 (1.5), 9 (1.6). 10 (LS), 11 (2.0), 12 (2.2), 
13 (2.5), 14 (2.75), 15 (3.0). 16 (5.0). 17 (7.5), 18 (iO)- If we remember that the scale of I~ in Fig.3a and b 
differs by a factor of almost lo4 and in Fig.3b and 3c by a factor of more than lo', we see 
that the smallness a, in Fig.3 implies, to even a greater degree than Fig.2, the closeness of 
the exact equations of the shock polar and epicycloid to each other. This is also implied by 
the values of (--lp) corresponding to Mk= 1. For M, = 1.i; 1.2; 1.3; 1.4; 1.5; 1.6; 1,7; 1.8 and 1.9 they 
are equal to 4.5.10-*; 8.7.10-5; 1.2.10-4; l.d.lO-*; 1.5.i0-*; 1.2.10-2; 9.4.iOss; 2.3.1W3 and 6.5.10-*. 

Fig.3 

Fig.3 shows that in a flow past WP we have a flow with overexpansion (+<O,p,<p,), when 
IS is obligatory, as well as a flow with underexpansion (~~>O,p,>p,). The second possibility 
becomes prevalent as M, increases. This agrees with the results in /16, 17/ where it was 
shown that in the case of hypersonic flows past a finite wedge, even the bottom pressure 
corresponding to 6,<0, exceeds p,. 

Since, as we move away along the plate to the right p-spa, when pp<poo retardation 
of the flow on the plate, according to /l/ and in the light of what was said before, cannot be 
avoided, and this leads to the appearance of IS. In contrast, when p,>p=, the gas moving 
along the plate accelerates "in the mean". However, even then the change in pressure can be 
non-monotonic. This is mainly caused by the form of the reflection of the rarefaction waves 
forming the bundle COE, from the WP (in the isentropic approximation discussed above this 
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reflection does not occur). We know (e.g. /lS/) that at every M, or V, the sign of k, 
which is the reflection coefficient of the perturbations arriving at the shock along the cf 
characteristics depend on the angle of inclination of the shock a. The possibilities arising 
in this case are shown in Fig.4. Here, in the V-a plane where V, is referred to the 
cirtical velocity, the region contained between the upper dashed line corresponding to the speed 
of sound behind the shock and the lower solid line representing the characteristic u = arcsin 

(ilM00) , corresponds to the supersonic velocities of the flow behind the shock. On the 
characteristic k= 0 and on the other two solid lines, which unlike the characteristic, 
yield "non-trivial" solutions of the equation, L(V,, a) = 0. 

In the regions I and III h<O the rarefaction waves as well as the compression waves are 
both reflected fran the shock. In the regions 11 and II' with a common boundary along a 
segment of the vertical shown in Fig.4 with dashed line, k> 0. For V, and u from II and 
II' the rarefaction waves are reflected from the shock as the rarefaction waves. Point C in 
Fig.1 hasacorresponding point c in Fig.4, belonging to one of the regions I,II,.II' or III. 
For the whole AS to the right of C we have in Fig.4 the corresponding segment of the vertical, 
connecting c withthe lower solid curve, i.e. with the &-characteristic into which AS degener- 
ates at infinity. For the points c from 11 the rarefaction waves of the bundle are reflected 
from the whole AS as rarefaction waves. In all other cases at least part of the rarefaction 
waves is reflected from the AS as compression waves. In such situations the IS may, in 
principle, appear already as the result of intersection of the reflected c-- characteristics. 
However, if this does not occur, then the compression waves fran the infinitely long c+- 
characteristics will, after reflection from the plate, necessarily intersect. Therefore, 
already when p,>p-, supersonic flow past WP without IS is possible only for the point c 
belonging to II. We note, by the way, that for weak AS the possibility of underexpansion of 
the flow @,> pm or z,>O) shows the importance of the term 0(&c) in (1.5). Indeed, we can 
show that for small 6 and As 

x(V, - l)M,~ 
z, = 

P, 
6-G 

where, as before, 6 = ((1- - q,)/r).. = (V, - V,)I(V, - 1). Hence, it follows from (1.5) that without 
the term 0(&) in (1.5) z, will always be negative. The latter contradicts the exact results 
shown in Fig.3. 

Computations analogous to those carried out for a WP, were performed for a CC. They 
showed that in the case of fully supersonic flow past a sharp cylinder, for M, and %k from the 
range of values overlapping the range of values of the parameters from the tables of flows 
past circular cones /19/, an overexpansion of the flow (~,<o,p,<p~) takes place behind the 
corner. Moreover, the derivative (dp/&), along OB at the point 0, computed using the method 
and results of /20/ for 8k= 10.i5.20 and 25O at M,= 1.6; 2.0; 2.4; 3.0; 4.1 and 5.2, and for ek = 10" 
also for M,= 1.2,waspositivein allcases. Thus here, unlike the WP where a small flow occurs 
in DOB, the retardation of the gas begins right behind the corner. Therefore, the supersonic 
flow past a sharp-edged cylinder is accompanied, at least in all cases studied here, by the 
appearance of IS. 

As we have already noted, the analysis carried out can also be applied to configurations 
obtained by replacing the plate (cylinder) by a wedge (cone) with positive angle of inclination 
of the generatrix &<6k. In particular, the computations carried out using the results 
obtained in /20/ for the values of t3k and M, listed above, showed the following. In all 
cases discussed here, except M, = 4.1 at ak = 25” and 17",(6,< 25” and of M, = 5.2 for 
f+k = 20” and 11” ,(e, < 20", as well as for 8k = 25” and IO” 66, < 25”, the derivative (dpldz), 
is positive (of course (tip/d&= 0 when 6,= 6,). On the other hand, when i?,> 0, the con- 

ditions of the appearance of IS are less favourable in both the plane and axisymmetric case, 
for two reasons. First, when @,>O it is the finite length of the c+- characteristics 
emerging from the body (all these characteristics, unlike the case 6,=0, arrive at the AS). 
Secondly, since AS does 

Fig.4 

not degenerate into a characteristic when e,>o, it follows that the 
reflection of the rarefaction waves from the AS without change in 
sign, can become possible, beginning with some 6,, also for the points 

c of region II' in Fig.4. The circumstances noted above extended the 
range of parameters for which flow without IS occurs for the con- 
figurations in question. In the limiting case of 8, =ek, we obtain 
trivial cases (flow past an infinite wedge and a cone with attached 
shock wave) of flows without IS. In spite of those trivial and non- 
trivial cases discussed above (first of all that of WP with point c 
from II), the analysis carried out confirms, in agreement with the 
results of /l-5, l--14/, that supersonic flows in semibounded regions 
not containing the IS, are more the exception than the rule. The 
latter is natural for the solutions of quasilinear, hyperbolic-type 
equations. 
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